A Maximum Correntropy Divided Difference Filter for Cooperative Localization
نویسندگان
چکیده
منابع مشابه
Maximum Correntropy Kalman Filter
—Traditional Kalman filter (KF) is derived under the well-known minimum mean square error (MMSE) criterion, which is optimal under Gaussian assumption. However, when the signals are non-Gaussian, especially when the system is disturbed by some heavy-tailed impulsive noises, the performance of KF will deteriorate seriously. To improve the robustness of KF against impulsive noises, we propose in ...
متن کاملMaximum correntropy unscented filter
Xi Liu, Badong Chena∗, Bin Xu, Zongze Wu, and Paul Honeine School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China; School of Automation, Northwestern Polytechnical University, Xi’an, China; School of Electronic and Information Engineering, South China University of Technology, Guangzhou, China; the Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen, LITIS, Rouen, ...
متن کاملMaximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation
A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the ...
متن کاملMaximum Likelihood-Based Iterated Divided Difference Filter for Nonlinear Systems from Discrete Noisy Measurements
A new filter named the maximum likelihood-based iterated divided difference filter (MLIDDF) is developed to improve the low state estimation accuracy of nonlinear state estimation due to large initial estimation errors and nonlinearity of measurement equations. The MLIDDF algorithm is derivative-free and implemented only by calculating the functional evaluations. The MLIDDF algorithm involves t...
متن کاملRobust Huber-Based Iterated Divided Difference Filtering with Application to Cooperative Localization of Autonomous Underwater Vehicles
A new algorithm called Huber-based iterated divided difference filtering (HIDDF) is derived and applied to cooperative localization of autonomous underwater vehicles (AUVs) supported by a single surface leader. The position states are estimated using acoustic range measurements relative to the leader, in which some disadvantages such as weak observability, large initial error and contaminated m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2018
ISSN: 2169-3536
DOI: 10.1109/access.2018.2859391